If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x-40x^2=0
a = -40; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·(-40)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*-40}=\frac{0}{-80} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*-40}=\frac{10}{-80} =-1/8 $
| 3w+4w-6w=20 | | 15p-15p+2p+3=17 | | n/12-5=11 | | F(1)=8x | | 4x-2|=10 | | 9z-8z+3=14 | | -5z=4 | | 8(x-1)=3x+22 | | 3x/4=1/2x | | -8d-7d-19d-2d-9d=-12 | | 3/4x+5/16-11/8=31/4 | | |5x+5|-7=18 | | 8-13=x-2+4 | | 3v-24=0 | | 2x+40+x+40=180 | | 3z+2z-z-3z=9 | | 2x+140=x+40 | | (v^2+8v+12)(3v-24)=0 | | 2x-5(-2x+5)=15 | | 4z-3z+-6z-15z=-20 | | -17x-10x+-18=10 | | 3(x)+x=32 | | 14=w+11 | | 8x^2+(-11x^2)=0 | | 36(33-4.5)=14(4x-8)+35.6 | | -5(7-b)=6 | | 71+(2x+13)=90 | | b/24=-20 | | 8=l-4 | | 4(3x-5)=2(x+15) | | 4a+1=2a+9 | | 6(5-q)=0 |